Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.904
Filtrar
1.
Nat Commun ; 15(1): 3116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600132

RESUMO

Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.


Assuntos
Córtex Auditivo , Localização de Som , Córtex Visual , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Estimulação Acústica/métodos
2.
Proc Natl Acad Sci U S A ; 121(15): e2310291121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564641

RESUMO

Humans blink their eyes frequently during normal viewing, more often than it seems necessary for keeping the cornea well lubricated. Since the closure of the eyelid disrupts the image on the retina, eye blinks are commonly assumed to be detrimental to visual processing. However, blinks also provide luminance transients rich in spatial information to neural pathways highly sensitive to temporal changes. Here, we report that the luminance modulations from blinks enhance visual sensitivity. By coupling high-resolution eye tracking in human observers with modeling of blink transients and spectral analysis of visual input signals, we show that blinking increases the power of retinal stimulation and that this effect significantly enhances visibility despite the time lost in exposure to the external scene. We further show that, as predicted from the spectral content of input signals, this enhancement is selective for stimuli at low spatial frequencies and occurs irrespective of whether the luminance transients are actively generated or passively experienced. These findings indicate that, like eye movements, blinking acts as a computational component of a visual processing strategy that uses motor behavior to reformat spatial information into the temporal domain.


Assuntos
Piscadela , Movimentos Oculares , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia , Visão Ocular
3.
Curr Biol ; 34(8): 1801-1809.e4, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569544

RESUMO

Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.


Assuntos
Percepção Visual , Humanos , Masculino , Adulto , Feminino , Percepção Visual/fisiologia , Adulto Jovem , Ilusões/fisiologia , Estimulação Luminosa , Eletroencefalografia , Discriminação Psicológica/fisiologia
4.
PLoS One ; 19(4): e0301999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635686

RESUMO

To study how the nervous system processes visual information, experimenters must record neural activity while delivering visual stimuli in a controlled fashion. In animals with a nearly panoramic field of view, such as flies, precise stimulation of the entire visual field is challenging. We describe a projector-based device for stimulation of the insect visual system under a microscope. The device is based on a bowl-shaped screen that provides a wide and nearly distortion-free field of view. It is compact, cheap, easy to assemble, and easy to operate using the included open-source software for stimulus generation. We validate the virtual reality system technically and demonstrate its capabilities in a series of experiments at two levels: the cellular, by measuring the membrane potential responses of visual interneurons; and the organismal, by recording optomotor and fixation behavior of Drosophila melanogaster in tethered flight. Our experiments reveal the importance of stimulating the visual system of an insect with a wide field of view, and we provide a simple solution to do so.


Assuntos
Drosophila melanogaster , Campos Visuais , Animais , Drosophila melanogaster/fisiologia , Estimulação Luminosa , Software , Interneurônios , Voo Animal/fisiologia , Percepção Visual/fisiologia
5.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38604776

RESUMO

Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.


Assuntos
Estimulação Acústica , Percepção Auditiva , Eletroencefalografia , Ritmo Gama , Humanos , Masculino , Feminino , Ritmo Gama/fisiologia , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
6.
Nat Commun ; 15(1): 3347, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637553

RESUMO

Neurons in the inferotemporal (IT) cortex respond selectively to complex visual features, implying their role in object perception. However, perception is subjective and cannot be read out from neural responses; thus, bridging the causal gap between neural activity and perception demands independent characterization of perception. Historically, though, the complexity of the perceptual alterations induced by artificial stimulation of IT cortex has rendered them impossible to quantify. To address this old problem, we tasked male macaque monkeys to detect and report optical impulses delivered to their IT cortex. Combining machine learning with high-throughput behavioral optogenetics, we generated complex and highly specific images that were hard for the animal to distinguish from the state of being cortically stimulated. These images, named "perceptograms" for the first time, reveal and depict the contents of the complex hallucinatory percepts induced by local neural perturbation in IT cortex. Furthermore, we found that the nature and magnitude of these hallucinations highly depend on concurrent visual input, stimulation location, and intensity. Objective characterization of stimulation-induced perceptual events opens the door to developing a mechanistic theory of visual perception. Further, it enables us to make better visual prosthetic devices and gain a greater understanding of visual hallucinations in mental disorders.


Assuntos
Lobo Temporal , Percepção Visual , Animais , Masculino , Humanos , Macaca mulatta/fisiologia , Percepção Visual/fisiologia , Lobo Temporal/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Estimulação Luminosa
7.
Behav Brain Funct ; 20(1): 8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637870

RESUMO

One important role of the TPJ is the contribution to perception of the global gist in hierarchically organized stimuli where individual elements create a global visual percept. However, the link between clinical findings in simultanagnosia and neuroimaging in healthy subjects is missing for real-world global stimuli, like visual scenes. It is well-known that hierarchical, global stimuli activate TPJ regions and that simultanagnosia patients show deficits during the recognition of hierarchical stimuli and real-world visual scenes. However, the role of the TPJ in real-world scene processing is entirely unexplored. In the present study, we first localized TPJ regions significantly responding to the global gist of hierarchical stimuli and then investigated the responses to visual scenes, as well as single objects and faces as control stimuli. All three stimulus classes evoked significantly positive univariate responses in the previously localized TPJ regions. In a multivariate analysis, we were able to demonstrate that voxel patterns of the TPJ were classified significantly above chance level for all three stimulus classes. These results demonstrate a significant involvement of the TPJ in processing of complex visual stimuli that is not restricted to visual scenes and that the TPJ is sensitive to different classes of visual stimuli with a specific signature of neuronal activations.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Lobo Parietal/fisiologia , Reconhecimento Psicológico , Neuroimagem , Análise Multivariada , Estimulação Luminosa , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico/métodos
8.
J Vis ; 24(4): 20, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656530

RESUMO

We obtain large amounts of external information through our eyes, a process often considered analogous to picture mapping onto a camera lens. However, our eyes are never as still as a camera lens, with saccades occurring between fixations and microsaccades occurring within a fixation. Although saccades are agreed to be functional for information sampling in visual perception, it remains unknown if microsaccades have a similar function when eye movement is restricted. Here, we demonstrated that saccades and microsaccades share common spatiotemporal structures in viewing visual objects. Twenty-seven adults viewed faces and houses in free-viewing and fixation-controlled conditions. Both saccades and microsaccades showed distinctive spatiotemporal patterns between face and house viewing that could be discriminated by pattern classifications. The classifications based on saccades and microsaccades could also be mutually generalized. Importantly, individuals who showed more distinctive saccadic patterns between faces and houses also showed more distinctive microsaccadic patterns. Moreover, saccades and microsaccades showed a higher structure similarity for face viewing than house viewing and a common orienting preference for the eye region over the mouth region. These findings suggested a common oculomotor program that is used to optimize information sampling during visual object perception.


Assuntos
Fixação Ocular , Movimentos Sacádicos , Percepção Visual , Humanos , Movimentos Sacádicos/fisiologia , Masculino , Feminino , Adulto , Fixação Ocular/fisiologia , Adulto Jovem , Percepção Visual/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Visual de Modelos/fisiologia
9.
Sci Rep ; 14(1): 9402, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658575

RESUMO

Perceptual decisions are derived from the combination of priors and sensorial input. While priors are broadly understood to reflect experience/expertise developed over one's lifetime, the role of perceptual expertise at the individual level has seldom been directly explored. Here, we manipulate probabilistic information associated with a high and low expertise category (faces and cars respectively), while assessing individual level of expertise with each category. 67 participants learned the probabilistic association between a color cue and each target category (face/car) in a behavioural categorization task. Neural activity (EEG) was then recorded in a similar paradigm in the same participants featuring the previously learned contingencies without the explicit task. Behaviourally, perception of the higher expertise category (faces) was modulated by expectation. Specifically, we observed facilitatory and interference effects when targets were correctly or incorrectly expected, which were also associated with independently measured individual levels of face expertise. Multivariate pattern analysis of the EEG signal revealed clear effects of expectation from 100 ms post stimulus, with significant decoding of the neural response to expected vs. not stimuli, when viewing identical images. Latency of peak decoding when participants saw faces was directly associated with individual level facilitation effects in the behavioural task. The current results not only provide time sensitive evidence of expectation effects on early perception but highlight the role of higher-level expertise on forming priors.


Assuntos
Eletroencefalografia , Reconhecimento Facial , Humanos , Masculino , Feminino , Adulto , Reconhecimento Facial/fisiologia , Adulto Jovem , Estimulação Luminosa , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Face/fisiologia
10.
Cogn Res Princ Implic ; 9(1): 25, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652383

RESUMO

The use of face coverings can make communication more difficult by removing access to visual cues as well as affecting the physical transmission of speech sounds. This study aimed to assess the independent and combined contributions of visual and auditory cues to impaired communication when using face coverings. In an online task, 150 participants rated videos of natural conversation along three dimensions: (1) how much they could follow, (2) how much effort was required, and (3) the clarity of the speech. Visual and audio variables were independently manipulated in each video, so that the same video could be presented with or without a superimposed surgical-style mask, accompanied by one of four audio conditions (either unfiltered audio, or audio-filtered to simulate the attenuation associated with a surgical mask, an FFP3 mask, or a visor). Hypotheses and analyses were pre-registered. Both the audio and visual variables had a statistically significant negative impact across all three dimensions. Whether or not talkers' faces were visible made the largest contribution to participants' ratings. The study identifies a degree of attenuation whose negative effects can be overcome by the restoration of visual cues. The significant effects observed in this nominally low-demand task (speech in quiet) highlight the importance of the visual and audio cues in everyday life and that their consideration should be included in future face mask designs.


Assuntos
Sinais (Psicologia) , Percepção da Fala , Humanos , Adulto , Feminino , Masculino , Adulto Jovem , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Máscaras , Adolescente , Fala/fisiologia , Comunicação , Pessoa de Meia-Idade , Reconhecimento Facial/fisiologia
11.
J Vis ; 24(4): 19, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652657

RESUMO

Researchers increasingly use virtual reality (VR) to perform behavioral experiments, especially in vision science. These experiments are usually programmed directly in so-called game engines that are extremely powerful. However, this process is tricky and time-consuming as it requires solid knowledge of game engines. Consequently, the anticipated prohibitive effort discourages many researchers who want to engage in VR. This paper introduces the Perception Toolbox for Virtual Reality (PTVR) library, allowing visual perception studies in VR to be created using high-level Python script programming. A crucial consequence of using a script is that an experiment can be described by a single, easy-to-read piece of code, thus improving VR studies' transparency, reproducibility, and reusability. We built our library upon a seminal open-source library released in 2018 that we have considerably developed since then. This paper aims to provide a comprehensive overview of the PTVR software for the first time. We introduce the main objects and features of PTVR and some general concepts related to the three-dimensional (3D) world. This new library should dramatically reduce the difficulty of programming experiments in VR and elicit a whole new set of visual perception studies with high ecological validity.


Assuntos
Software , Realidade Virtual , Humanos , Reprodutibilidade dos Testes , Percepção Visual/fisiologia , Interface Usuário-Computador
12.
Artigo em Inglês | MEDLINE | ID: mdl-38557619

RESUMO

Visual selective attention studies generally tend to apply cuing paradigms to instructively direct observers' attention to certain locations, features or objects. However, in real situations, attention in humans often flows spontaneously without any specific instructions. Recently, a concept named "willed attention" was raised in visuospatial attention, in which participants are free to make volitional attention decisions. Several ERP components during willed attention were found, along with a perspective that ongoing alpha activity may bias the subsequent attentional choice. However, it remains unclear whether similar neural mechanisms exist in feature- or object-based willed attention. Here, we included choice cues and instruct cues in a feature-based selective attention paradigm, allowing participants to freely choose or to be instructed to attend a color for the subsequent target detection task. Pre-cue ongoing alpha oscillations, cue-evoked potentials and target-related steady-state visual evoked potentials (SSVEPs) were simultaneously measured as markers of attentional processing. As expected, SSVEP responses were similarly modulated by attention between choice and instruct cue trials. Similar to the case of spatial attention, a willed-attention component (Willed Attention Component, WAC) was isolated during the cue-related choice period by comparing choice and instruct cues. However, pre-cue ongoing alpha oscillations did not predict the color choice (yellow vs blue), as indicated by the chance level decoding accuracy (50%). Overall, our results revealed both similarities and differences between spatial and feature-based willed attention, and thus extended the understanding toward the neural mechanisms of volitional attention.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados/fisiologia , Sinais (Psicologia) , Estimulação Luminosa , Percepção Visual/fisiologia
13.
Int J Psychophysiol ; 199: 112341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580171

RESUMO

The ability to select task-relevant information and filter out task-irrelevant information is critical to our success in daily goal-directed behavior. Researchers call this ability filtering efficiency and divide it into three cognitive processing stages: detection of distractors, initiation of filtering, and unnecessary storage. Although researchers have conducted more studies on ERP components related to filtration efficiency, there are few studies related to neural oscillations. Alpha oscillation activity is related to the active processing of information and the suppression of distractors. In the current EEG study, we used the change detection task with distracted items to examine whether alpha activity during filtering initiation reflects reactive suppression of distractors by manipulating memory load levels and the presence or absence of distractors. Results showed that, the presence of the distractors caused an increase in the degree of desynchronization of the alpha oscillations, and in the subsequent time, the alpha activity level returned to a level consistent with the absence of interference conditions. Phase synchronization between frontal and posterior brain regions in the upper alpha oscillations found no effects associated with distractors. Based on these results, we believed that the alpha activity during the filtering initiation phase reflected the active processing of distractors, but this may also be due to lower perceptual load of the target items. In addition, we observed a dominance effect of the right hemisphere in both time-frequency results and connectivity results. We speculate that this effect is related to the activation of the right ventral frontoparietal network.


Assuntos
Memória de Curto Prazo , Percepção Visual , Humanos , Percepção Visual/fisiologia , Memória de Curto Prazo/fisiologia , Encéfalo/fisiologia , Cognição , Eletroencefalografia/métodos
14.
IEEE Trans Image Process ; 33: 2714-2729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557629

RESUMO

Billions of people share images from their daily lives on social media every day. However, their biometric information (e.g., fingerprints) could be easily stolen from these images. The threat of fingerprint leakage from social media has created a strong desire to anonymize shared images while maintaining image quality, since fingerprints act as a lifelong individual biometric password. To guard the fingerprint leakage, adversarial attack that involves adding imperceptible perturbations to fingerprint images have emerged as a feasible solution. However, existing works of this kind are either weak in black-box transferability or cause the images to have an unnatural appearance. Motivated by the visual perception hierarchy (i.e., high-level perception exploits model-shared semantics that transfer well across models while low-level perception extracts primitive stimuli that result in high visual sensitivity when a suspicious stimulus is provided), we propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the above mentioned problems. For black-box transferability, we inject protective noises into the fingerprint orientation field to perturb the model-shared high-level semantics (i.e., fingerprint ridges). Considering visual naturalness, we suppress the low-level local contrast stimulus by regularizing the response of the Lateral Geniculate Nucleus. Our proposed FingerSafe is the first to provide feasible fingerprint protection in both digital (up to 94.12%) and realistic scenarios (Twitter and Facebook, up to 68.75%). Our code can be found at https://github.com/nlsde-safety-team/FingerSafe.


Assuntos
Mídias Sociais , Humanos , Dermatoglifia , Privacidade , Percepção Visual
15.
PLoS Biol ; 22(4): e3002564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557761

RESUMO

Behavioral and neuroscience studies in humans and primates have shown that memorability is an intrinsic property of an image that predicts its strength of encoding into and retrieval from memory. While previous work has independently probed when or where this memorability effect may occur in the human brain, a description of its spatiotemporal dynamics is missing. Here, we used representational similarity analysis (RSA) to combine functional magnetic resonance imaging (fMRI) with source-estimated magnetoencephalography (MEG) to simultaneously measure when and where the human cortex is sensitive to differences in image memorability. Results reveal that visual perception of High Memorable images, compared to Low Memorable images, recruits a set of regions of interest (ROIs) distributed throughout the ventral visual cortex: a late memorability response (from around 300 ms) in early visual cortex (EVC), inferior temporal cortex, lateral occipital cortex, fusiform gyrus, and banks of the superior temporal sulcus. Image memorability magnitude results are represented after high-level feature processing in visual regions and reflected in classical memory regions in the medial temporal lobe (MTL). Our results present, to our knowledge, the first unified spatiotemporal account of visual memorability effect across the human cortex, further supporting the levels-of-processing theory of perception and memory.


Assuntos
Encéfalo , Percepção Visual , Animais , Humanos , Percepção Visual/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
16.
PLoS One ; 19(4): e0300222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558003

RESUMO

Locomotion has been shown to impact aspects of visual processing in both humans and animal models. In the current study, we assess the impact of locomotion on the dynamics of binocular rivalry. We presented orthogonal gratings, one contrast-modulating at 0.8 Hz (matching average step frequency) and the other at 3.2 Hz, to participants using a virtual reality headset. We compared two conditions: stationary and walking. We continuously monitored participants' foot position using tracking devices to measure the step cycle. During the walking condition, participants viewed the rivaling gratings for 60-second trials while walking on a circular path in a virtual reality environment. During the stationary condition, observers viewed the same stimuli and environment while standing still. The task was to continuously indicate the dominant percept via button press using handheld controllers. We found no significant differences between walking and standing for normalized dominance duration distributions, mean normalized dominance distributions, mean alternation rates, or mean fitted frequencies. Although our findings do not align with prior research highlighting distinctions in normalized dominance distributions between walking and standing, our study contributes unique evidence indicating that alternation rates vary across the step cycle. Specifically, we observed that the number of alternations is at its lowest during toe-off phases and reaches its peak at heel strike. This novel insight enhances our understanding of the dynamic nature of alternation patterns throughout the step cycle.


Assuntos
Realidade Virtual , Visão Binocular , Humanos , Disparidade Visual , Percepção Visual , Caminhada , Estimulação Luminosa
17.
Sci Rep ; 14(1): 7987, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575646

RESUMO

While a vast amount of research has focused on understanding the capacity limits of visual working memory (VWM), little is known about how VWM resources are employed in unforced behavior and how they correlate with individual capacity constraints. We present a novel, openly available, and easy-to-administer paradigm enabling participants to freely utilize their VWM capacity. Participants had to reconstruct an array of colored squares. In each trial, they were allowed to alternate between the memory array and the reconstruction screen as many times as they wished, each time choosing how many items to reconstruct. This approach allowed us to estimate the number of utilized items, as well as the accuracy of the reconstruction. In addition, VWM capacity was measured using a change detection task. In two experiments, we show that participants tend to under-utilize their VWM resources, performing well below their capacity limits. Surprisingly, while the extent to which participants utilized their VWM was highly reliable, it was uncorrelated with VWM capacity, suggesting that VWM utilization is limited due to strategic considerations rather than capacity limits.


Assuntos
Memória de Curto Prazo , Percepção Visual , Humanos
18.
J Vis ; 24(4): 22, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662347

RESUMO

Solving a maze effectively relies on both perception and cognition. Studying maze-solving behavior contributes to our knowledge about these important processes. Through psychophysical experiments and modeling simulations, we examine the role of peripheral vision, specifically visual crowding in the periphery, in mental maze-solving. Experiment 1 measured gaze patterns while varying maze complexity, revealing a direct relationship between visual complexity and maze-solving efficiency. Simulations of the maze-solving task using a peripheral vision model confirmed the observed crowding effects while making an intriguing prediction that saccades provide a conservative measure of how far ahead observers can perceive the path. Experiment 2 confirms that observers can judge whether a point lies on the path at considerably greater distances than their average saccade. Taken together, our findings demonstrate that peripheral vision plays a key role in mental maze-solving.


Assuntos
Resolução de Problemas , Movimentos Sacádicos , Humanos , Resolução de Problemas/fisiologia , Movimentos Sacádicos/fisiologia , Campos Visuais/fisiologia , Aprendizagem em Labirinto/fisiologia , Masculino , Adulto Jovem , Psicofísica/métodos , Estimulação Luminosa/métodos , Feminino , Adulto , Percepção Visual/fisiologia
19.
Anim Cogn ; 27(1): 33, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616235

RESUMO

Figure-ground segmentation is a fundamental process in visual perception that involves separating visual stimuli into distinct meaningful objects and their surrounding context, thus allowing the brain to interpret and understand complex visual scenes. Mammals exhibit varying figure-ground segmentation capabilities, ranging from primates that can perform well on figure-ground segmentation tasks to rodents that perform poorly. To explore figure-ground segmentation capabilities in teleost fish, we studied how the archerfish, an expert visual hunter, performs figure-ground segmentation. We trained archerfish to discriminate foreground objects from the background, where the figures were defined by motion as well as by discontinuities in intensity and texture. Specifically, the figures were defined by grating, naturalistic texture, and random noise moving in counterphase with the background. The archerfish performed the task well and could distinguish between all three types of figures and grounds. Their performance was comparable to that of primates and outperformed rodents. These findings suggest the existence of a complex visual process in the archerfish visual system that enables the delineation of figures as distinct from backgrounds, and provide insights into object recognition in this animal.


Assuntos
Perciformes , Animais , Encéfalo , Percepção Visual , Primatas , Mamíferos
20.
Sci Rep ; 14(1): 8707, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622201

RESUMO

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Assuntos
Percepção de Movimento , Percepção do Tato , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia , Percepção Visual , Mãos/fisiologia , Movimento/fisiologia , Percepção de Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...